
N91-24048

TRANSPORTABLE APPLICATIONS ENVIRONMENT (TAE) PLUS:
A NASA USER INTERFACE DEVELOPMENT AND MANAGEMENT SYSTEM

Martha R. Szczur

NASA/GOddard Space Flight Center
Greenbelt, MD 20771 USA

mszczm@postman.gsfc.nasa.gov

ABSTRACT

The Transportable Applications Environment Plus (TAE TM Plus), developed at NASA's Goddard
Space Flight Center, is a portable What You See Is What You Get 0hrysIWYG) user interface
development and management system. Its primary objective is to provide an integrated software
environment that allows interactive prototyping and development of graphical user interfaces, as
well as management of the user interface within the operational domain. TAE Plus is being
applied to many types of applications, and this paper discusses what TAE Plus provides, how the
implementation has utilized state-of-the-an technologies within graphic workstations, and how it
has been used both within and outside NASA.

BACKGROUND

Erner__cnceof __m-aphi_.user interfaces

With the recent emergence of sophisticated graphic workstations and the subsequent demands for highly
interactive systems, designing and developing good user interfaces has become more complex and difficult.
Prior to the graphic workstations, the application developer was primarily concerned with developing user
interfaces for a single monochrome 80x24 alphanumeric character screen with keyboard user entry. With
high resolution bit-mapped workstations, the user interface designer has to be cognizant of multiple win-
dow displays, the use of color, graphical objects and icons, and various user selection techniques (e.g.,
mouse, trackball, tablets).

High resolution graphic workstations also provide system developers with the opportunity to rethink and
redesign the user interfaces (UI) of their next generation applications. For instance, in a command and con-
trol environment, many processes run simultaneously to monitor a particular operation. With modern
graphic workstations, time critical information concerning multiple events can be displayed concurrently on
the same screen, organized into different windows in a variety of graphical and textual presentations, As
today's workstations inspire more elaborate user interfaces, the applications which utilize their graphics
capabilities increase in complexity. Prototyping different user interface designs, thus, becomes an increas-
ingly important method for developing and communicating concepts and requirements for an application.

Role of _t_olotyp__ing at GSlq2

Prototypes can be constructed with various levels of sophistication and fidelity. At their simplest they are
visual mockups of the user interface. A prototype can also be a dynamic sequence of events, with simu-
lated control between steps. They can even be a working model of a system, which can evolve into an
operational system or be used for research purposes.

Within the government environment, prototypes also can play the important role of communicating specifi-
cations from government agency to the contractor, as well as to validate contractor interpretation and
design approaches by reviews from the targeted government user. Prototyping key concepts and salient

56

features of proposed user interface standards, applied in typical operations scenarios, greatly enhances the
users' ability to respond and have their concerns understood. Thus, including prototyping as a step in the

application development cycle can ensure user acceptance of the final operational application.

R_eguirementsfora__t_ypm_" -__-ope_onal devel_opmentenvironment

To support our development methodology we wanted to establish an integrated environment that allows
prototyped user interfaces to evolve into operational applications. This environment would satisfy the fol-
lowing objectives:

• separate the user interface from the application,
• provide tools to allow interactive design/change/save of user interface elements,
• take advantage of the latest hardware technology,
• support rapid prototyping,
• manage the user interface,
• allow integrated management of multiple, asynchronously-active processes,
• develop tools for increasing application development productivity,
• provide the application with runtime services, and
• allow portability to different computing environments.

Building on existing technology_.

Many of these objectives were addressed in the early 1980's when GSFC recognized that most large-scale
space applications, regardless of function, required software to support human-computer interactions and
application management. This lead to the design and implementation of the Transportable Applications
Executive (now, referred to as TAE Classic), which abstracts a common core of system service routines
and user dialog techniques used by all applications [Ref. 1]. Over the years, TAE Classic has matured into
a powerful tool for quickly and easily building and managing consistent, portable user inter-faces, but only
for the standard alphanumeric terminal. When the requirement to support graphical user interfaces
emerged, TAE Classic was examined as a potential building block. It was determined that it had a suffi-
ciently flexible architecture and data structure to accommodate the extensions that would be needed to sup-

port user interface development within the graphic workstation environment.

WHAT DOES TAEI:_.,US PROVIDE?

To meet the defined goals, services and tools were developed for creating and managing window-oriented
user interfaces. It became apparent, due to the flexibility and complexity of graphical user interfaces, that

the design of the user interface should be considered a separate activity from the application program
design. The interface designer can then incorporate human factors and graphic art techniques into the user
interface design. The application programmer needs only to be concerned about what results are returned

by the user interaction and not the look of the user interface.

In support of the user interface designer, an interactive WorkBench application was implemented for
manipulating interaction objects ranging from simple buttons to complex multi-object panels. As illus-
trated in Figure I, after designing the screen display, the WorkBench saves the specification of the user
interface in resource files, which can then be accessed by application programmers through a set of runtime

services, Window Programming Tools (WPTs). Guided by the information in the resource files, the rou-
tines handle all user interactions, The WPTs utilize the standard MIT X Window System TM to communi-

cate with the graphic workstations. [Ref. 2] As a further aid to the UI developer, the WorkBench provides
an option to generate the source code which will display and manage the designed user interface. This

gives the programmer a working template into which application-specific code can be added.

57

.°-°..°-......°°°-.....°°. °°.°on°°=o..o...°l............. _°.°o,

....... TA,: :-::.:-"

i,::'_6_'e_'_r_i._'_r6_"iii iiiiiiiiZi:::iiiiiiii;ii i !iiiiiii!}i)ii}iiiiii!ii

:::Run Time Envlronment

Figure 1. TAE Structure

IN'IERACTION OBJECTS AS BUILDING BLOCKS

The basic building blocks for developing an application's graphical user interface are a set of interaction
objects. All visually distinct elements of a display that are created and managed using TAE Plus are con-
sidered to be interaction objects and they fall into three categories: user-entry objects, information objects,
and data-driven objects. User-entry objects are mechanisms by which an application can acquire informa-
tion and directives from the end user. They include radio buttons, check boxes, text entry fields, scrolling
text lists, pulldown menus and push buttons. Information objects are used by an application to instruct or
notify the user, such as contextual on-line help information displayed in a scrollable static text object or
brief status error messages displayed in a bother box. Data-driven objects are vector-drawn graphic objects

BasicTAE Items

TextDisplay:, PageEdit

display
A user can

this
text,but cannot
select anything,

Scrolling list

[] Checkbox# 1
[] Checkbox#Z

Radio:! column

• Choice 1 StalJcText

Q Choice 2

O Choice3
Radio:Z column

0 yes • no

TextKeyin: I. I

'_Wlue-0

Stretchers

1
value = 3.2 I

Rotators

:,.........._,.:

_-.? /'®%

Dynamic Text Stripchart

|llltltlll_

Discrete

Figure 2. TAE Plus User Interface Interaction Objects

58

which are linked to an application data variable; elements of their view change as the data values

change. Examples are dials, thermometers, and strip charts. When creating user dialogues, these objects

are grouped and arranged within panels (i.e., windows) in the WorkBench.

The use of interaction objects offers the application designer/programmer a number of benefits with the

expected payoff of an increase in programmer productivity. The interaction objects provide a consistent

look and feel for the application's user interface, which translates into reduced end-user training time,

more attractive screens, and an application which is easier to use. Another key benefit is that since the

interaction objects have been thoroughly tested and debugged, the programmer is able to spend more

time testing the application and less time verifying that the user interface behaves correcdy. This is

particularly important considering the complexity of some of the objects, and the programming effort it
would take to code them from scratch. Refer to Figure 2 for a sample of the TAE Plus interaction

objects.

TAE PLUS WORKBENCH

The WorkBench provides an intuitive environment for defining, testing, and communicating the look
and feel of an application system. Functionally, the WorkBench allows an application designer to

dynamically lay out an application screen, defining its static and dynamic areas. The tool provides the

designer with a choice of pre-designed interaction objects and allows for tailoring, combining and rear-
ranging of the objects. To begin the session, the designer needs to create the base panel (i.e., window)

into which interaction objects will be specified. The designer specifies presentation information, such as

the title, font, color, and optional on-line help for the panel being created. The designer defines both the

presentation information and the context information of all interaction items to reside in the panel by

using the item specification window (refer to Figure 3). For icon support, the WorkBench has an icon

Figure 3. Building a user interface with the WorkBench

59

Figure 4. Creating a stretcher data-driven object

editor, within which an icon can be drawn, edited and saved. As the UI designer moves, resizes, and alters

any of the item's attributes, the changes are dynamically reflected on the display screen.

The designer also has the option of retrieving palettes of previously created items. The ability to reuse

interaction objects saves programming time, facilitates experimenting with different combinations of items

in the prototyping process, and contributes to standardization of the application's look and feel. If an appli-

cation system manager wanted to ensure consistency and uniformity across an entire application's UI, all

developers could be instructed to use only items from the application's palette of common items.

When creating a data-driven object, the designer goes through a similar process by setting the associated

attributes (e.g., color thresholds, maximum, minimum, update delta) in the specification panels. To create

the associated graphics drawing, the WorkBench provides a drawing tool within which the static back-

ground and dynamic foreground of a data-driven object can be drawn, edited, and saved. Figure 4 shows

the drawing tool being used to create a stretcher data-driven object.

Most often an application's UI will be made up of a number of related panels, sequenced in a meaningful

fashion. Through the WorkBench, the designer defines the interface connections. These links determine

what happens when the user selects a button or a menu entry. The designer attaches events to interaction

items and thereby designates what panel appears and/or what program executes when an event is triggered.

Events are triggered by user-controlled I/O peripherals (e.g, point and click devices or keyboard input).

TAE Plus also offers an optional help feature which provides a consistent mechanism for supplying appli-

cation-specific information about a panel and any interaction items within the panel. In a typical session,

the designer elects to edit a help file after all the panel items have been designed. Clicking on the edit help

option in the Panel Specification Panel brings up a text editor window in which the appropriate information
can be entered. The designer can then define any button item or icon item to be the help item for the panel

(in this scenario it would be the help icon in the panel "Monitor"). During the application operation, when

6O

ORIGINAL PAGE IS

OF POOR QUALITY

the end-user clicks on the question mark item, the cursor changes to a question mark symbol (?). The end-
user then clicks on the panel itself or any item in the panel to bring up a help panel containing the asso-
ciated help text.

Having designed the layout of panels and their attendant items and having threaded the panel and items
according to their interaction scenario, the designer is able to preview (i.e., rehearse) the interface's opera-
tion from the WorkBench. With this potential to test drive an interface, to make changes, and to test again,
iterative design becomes part of the prototyping process. With the rehearsal feature, the designer can eval-
uate and refine both the functionality and the aesthetics of a proposed interface. After the rehearsal, control
is returned to wherever the designer left off in the WorkBench and the designer can either continue with the
design process or save the defined UI in a resource file.

Developing software with sophisticated user interfaces is a complex process, mandating the support of var-
ied talents, including human factors experts and application program specialists. Once the UI designer
(who may have limited experience with actual code development) has finished the UI, he/she can turn the

saved UI resource file over to an experienced programmer. As a further aid to the application programmer,
the WorkBench has a "generate" feature, which produces a fully annotated and operational body of code
which will display and manage the entire WorkBench-designed UI. Currently, source code generation of
C, Ada, FORTRAN and TCL are supported, with bindings for C++ expected in a future release of TAE
Plus. The programmer can now add additional code to this template and make a fully functional applica-
tion. Providing these code stubs helps in establishing uniform programming method and style across large
applications or within a family of interrelated software applications.

WINDOW PROGRAMMING TOOLS (WPTs)

The Window Programming Tools (WPTs) are a package of application program callable subroutines used
to control an application's user interface. Using these routines, applications can define, display, receive
information from, update and/or delete TAE Plus panels and interaction objects. WPTs support a modeless
user interface, meaning a user can interact with one of a number of interaction objects within any one of a
number of displayed panels. In contrast to sequential mode-oriented programming, modeless programming
accepts, at any instance, a number of user inputs, or events. Because these multiple events must be handled
by the application program, event-driven programming can be more complex than traditional programming.
The WorkBench's auto-generation of the WPT event loop reduces the risk of programmer error within the

UI portion of an applica-
Wpt._AddEvent

Wpt BegtnWalt

Wpt Closeltems

Wpt._ConvertName

Wpt.._Endwalt

Wpt_lnlt

Wpt_ltemWlndow

Wpt_MisslngVal

Wpt_New Panel

Wpt_NextEvent

Wpt_PanelErase

Wpt_PanelMessage

Wpt._PanelReset

Wpt_PanelTopWindow

Wpt_PenelWidgetld

Wpt_PanelWindow

Wpt _ParmReJect

Wpt_ParmUpdste

Wpt_Pending

Wpt__RemoveEvent

Wpt..SetTimeOut

Wpt_ViewUpdate

Add other sources for Input/output/exception

Display busy Indicator cursor

Close Items on s Panel

Get the X Id of a named window

Stop displaying busy Indicator cursor

Initializes interface to X Window System

Gets the window Id of the window contalnlng a parameter

Indicates if any values are missing

Displays a user Interface panel

Gets next panel-related event

Erases the displayed panel from the screen

Displays message in "Bother Box"

Resets object values to Initial values

Gets panel's parent shell window id

Return the Widget Id of a Wpt Panel Widget

Returns the X Id of e panel

Generates a rejection message for a given value

Updates the displayed values of an object

Check if a WptEvent is pending from X, Parm or file.

Remove a previously registered event

Set/Cancel tlmeout for gathering Wpt events.

Updates the view of s parameter on e displayed panel

Figure 5. The Window Programming Tools (WPTs)

tion's implementation.

As mentioned earlier, the
WPT package utilizes
the MIT X Window Sys-
tem as its base window-

ing system. One of the
strengths of X is the con-
cept of providing a low-
level abstraction of win-

dowing support (Xlib),
which becomes the base

standard, and a high-
level abstraction (X tool-
kits), which has a set of
interaction objects
(called "widgets" in the
X world) that define ele-
ments of a UI's look and
feel. The current version

61

of TAE Plus (V4.1) operates with the X11R3 and X11R4 version using the X Toolkit and HP widget set

delivered with the X software. Due to the growing acceptance of the Open Software Foundation's Motif ru

user interface style as a defacto industry standard, the next release of TAE Plus (V5.0) will be based on the
Motif software.

The WPTs also provide a buffer between the application program and the X Window System services. For

instance, to display a WorkBench-designed panel, an application makes a single call to Wpt_NewPanel

(using the panel name specified in the WorkBench). This single call translates into a function that can

make as many as 50 calls to X Window System routines. For the majority of applications, the WPT ser-

vices and objects supported by the WorkBench provide the necessary user interface tools and save the pro-

grammer from having to learn the complexities of programming directly with X. This can be a significant

advantage, especially when considering the learning curve differential between 26 WPT routines versus

over 400 X Toolkit intrinsics and over 200 Xlib services. Refer to Figure 5 for a sample list of the WPTs.

IMPLEMENTATION

The TAE Plus architecture is based on a separation of the user interaction management from the applica-

tion-specific software. The current implementation is a result of having gone through several prototyped

and beta versions of a WorkBench and user interface support services during the 1986-89 period, as well as

building on the TAE Classic structure.

The "Classic" portion of the TAE Plus code (_- 60,000 LOC) is implemented in the C programming

language. In selecting a language for the WorkBench and the WPT runtime services, we felt a "true"

object-oriented language would provide us with the optimum environment for implementing the TAE Plus

graphical user interface capabilities. (See Chapter 9 of Cox [Ref. 4] for a discussion on the suitability of
object-oriented languages for graphical user interfaces.) We selected C++ [Ref. 5] as our implementation

language for several reasons [Ref. 6]. For one, C++ is becoming increasingly popular within the object-

oriented programming community. Another strong argument for using C++ was the availability of existing,
public domain, X-based object class libraries. Utilizing an existing object library is not only a cost saver,

but also serves as a learning tool, both for object-oriented programming and for C++. Delivered with the X

Window System is thelnterViews C++ class library and a drawing utility, idraw, both of which were

developed at Stanford University. [Ref. 7] The idraw utility is a sophisticated direct manipulation C++
application, which we integrated into the WorkBench to support creating, editing and saving the graphical

data-driven interaction objects.

PORTABILITY ISSUES

Throughout the design and development of TAE Plus, one of our primary goals has been to be "portable"
over a wide range of hardware platforms. It is a requirement that TAE Plus operate on various UNIX sys-

tems and VAX/VMS. There are three primary software areas identified to be the most nonportable -- file

manipulation, process control and interprocess communication. The software modules to support these

areas are localized and tailored to the individual operating system of each host environment. With the

proper use of tailored include files, TAE Plus ports between workstations with few problems.

When porting among different hardware platforms, the host system's method of storing binary information

is always of key concern. Since TAE Plus's resource files are binary, we provide a utility to produce a

straight ASCII equivalent of the file. This file c_ then be transferred to any platform that accepts the

ASCII character set and then converted back into a binary file, which can be read by TAlE Plus applications

(including the WorkBench) operating on the target platform.

As mentioned earlier in this paper, the C language was selected for implementing TAE Classic and it has

proven to be an efficient and standard language across different hardware platforms. The C++ code has

proven to be less portable than anticipated. There are several differences, even syntactical, among the

62

variousC++compilers.Thereforeit wasdecidedtoinitiallylimitoursupporttojusttwocompilers.They
aretheGNUC++andtheOASYSDesignerC++compiler.WiththerecentreleaseoftheAT&TV2.0C++
compiler,C++isbecomingmorestandardizedandthecompilerissueisexpectedtodissipateasvendor's
offerC++asoneoftheirstandardlanguagecompilers.

Thesinglemostimportantfactorcontributingtotheportabilityof TAE Plus is the X Window System.

Generally, if a graphic workstation supports the Xlib and X Toolkit and operates either UNIX or VMS,

TAE Plus can be ported to it with reasonable ease.

AVAILABILITY AND USER SUPPORT

Mter two years of prototyping and developing beta versions of the TAE Plus, an industrial strength ver-
sion of TAE Plus (Version 4.1) was released in February 1990. It is available for public distribution, at a

minimal license fee, from the Center of Software Management and Information Center (COSMIC), a

NASA distribution center. While TAE Plus base development and testing is done on a Sun workstation

under UNIX within the R&D laboratory at GSFC, TAE Plus is also ported and validated with formal

acceptance testing on the following UNIX workstations: Apollo, Vaxstation II, Decstation 3100,
HtX)000, and Macintosh II (A/UX). TAE Plus is also available and validated on the Vaxstation II under
VMS and DECWindows TM . Other user sites have successfully installed TAE Plus onto the Masscomp,

Silicon Graphics Iris and other Unix-based graphic workstations. In January 1991, a beta release of TAE
Plus 5.0, which uses the latest version of OSF Motif TM (VI.1), will be available to licensed TAE users on

the Sun workstations. In subsequent months, ports to other workstations will become available. There are

plans to port TAE Plus to new architectures, including the new IBM 6000 workstation and the 386i class of
workstations.

Since the first release of TAE Classic in 1981, we have provided user support through a fully staffed TAE

Support Office (TSO). This service has been one of the primary reasons for the success of TAE. Through
the TSO, users receive answers to technical questions, report problems, and make suggestions for improve-

ments. In turn, the TSO keeps users up-to-date on new releases, publishes a newsletter, and sponsors user

workshops and conferences. This exchange of information enables the Project Office to keep the TAE
software and documentation up-to-date and, perhaps most importantly, take advantage of user feedback to

help direct future development.

APPLICATIONS USING TAE PLUS

Since 1982 over 750 sites have installed TAE Classic and/or TAE Plus. The applications built or being

built with TAE perform a variety of different functions. TAE Classic usage was primarily used for build-

ing and managing large scientific data analysis and data base systems (e.g., NASA's Land Analysis System

(LAS), Atmospheric and Oceanographic Information Processing System (AOIPS), and JPL's Multimis-

sion Image Processing Laboratory (MIPL) system.) Within the NASA community, TAE Plus is also used
for scientific analysis applications, but the heaviest concentration of user applications has shifted to support

of realtime control and processing applications. This includes supporting satellite data capture and pro-

cessing, monitor and control of spacecraft and science instruments, prototyping user interface of the Space

Station Freedom crew workstations and supporting diagnostic display windows for realtime control sys-

tems in ground operations. For these types of applications, TAE Plus is principally used to design and

manage the user interface, which is made up of a combination of user entry and data-driven interaction

objects. TAE Plus becomes a part of the development life cycle as projects use TAE Plus to prototype the

initial user interface design and have this designed user interface evolve into the operational UI.

Outside the NASA community, TAE Plus is being used by an assortment of other government agencies

(22%), universities (15%), and private industries (35%). Within the government sector, users range from
the National Center for Atmospheric Research, National Oceanographic and Atmospheric Adminstration,

U.S. Geological and EROS Data Center, who are developing scientific analysis, image mapping and data

63

J

Bend
Shoulder

Ratate Base

II

Bend
Elbow

Bend
Hand

0

Rotate
Wrist

9O

Open
C|ose I+-))

Fingers

180

[]

Figure 6.
Robot control panel developed at University of Colorado

distribution systems, to numerous Department of Defense laboratories, who are building command-and-

control-related systems. Universities represented among the TAE community include CalTech, Cornell,

Georgia Tech, MIT, Stanford, University of Maryland and University of Colorado. Applications being

developed by University of Colorado include the Operations and Science Instrument Support System

(OASIS), which monitors and controls spacecraft and science instruments and a robotics testbed for

research intor the problems of conslruction and assembly in space. [Ref. 8] Figure 6 shows a view of the
robot arm, built with TAE Plus. As the current location of the robot changes, the data-driven objects

change respectively. Private industry has been a large consumer of the TAE technology and a sample of

the companies that have received TAE Plus V4.1 include Apple Computer Inc., Ford Aerospace, Martin

64
ORIGINAL PAGE IS
OF POOR QU/_LJTY

Marietta, Computer Sciences Corp., TRW, Lockheed, IBM, Northern Telecom, Mitre Corp., General

Dynamics and GTE Government Systems. These companies are using TAE Plus for an assortment of

applications, ranging from a front-end for a corporate database to advar_e_l-iietwork control center. North-
ern Telecom, Inc. used TAE Plus to develop a technical assistance service application which enables users

to easily access a variety of applications residing on a network of heterogeneous host computers. [Ref. 9]

Because of the high cost associated with programming and software-development, more and more software
development groups are looking for easy-to-use productivity tools, and TAE Plus is becoming recognized

as a viable tool for developing an application's user interface.

NEXT STEPS

The current TAE Plus provides a useful tool within the user interface development environment -- from the

initial design phases of a highly interactive prototype to the fully operational application package. How-

ever, there are many enhancements and new capabilities that will be added to TAE Plus in future releases.

In the near term, the emphasis will be on enhancement features and upgrades, with the support for the Open

Software Foundation's (OSF) Motif TM style and optimizing the TAE Plus software to improve real-time

performance being of highest priority. All the requested enhancements are user-driven, based on actual

experience using TAE Plus, or requirement-driven based on an application's design. For example, on the
enhancements list are extensions to the interaction objects, (e.g., graph data-driven object, form fill-in),

support for importing foreign graphics, and refinements in the code generation feature.

Future advancements include expanding the scope of the Transportable Applications Environment (TAE)

to include new tools or technologies. For instance, the introduction of hypermedia technology and the inte-

gration of expert system technology to aid in making user interface design decisions are targeted for inves-

tigation and prototyping.

CONCLUSION

With the emergence of sophisticated graphic workstations and the subsequent demands for highly interac-

tive systems, the user interface becomes more complex and includes multiple window displays, the use of

color, graphical objects and icons, and various selection techniques. Prototyping of different user interface

designs, thus, becomes an increasingly important method for stabilizing concepts and requirements for an

application. At GSFC, the TAE Plus development team had the requirement to provide a tool for proto-

typing a visual representation of a user interface, as well as to establish an integrated development environ-

ment that allows prototyped user interfaces to evolve into operational applications. TAE Plus is fulfilling

this role by providing a usable, generalized, portable and maintainable package of development tools.

TAE Plus is an evolving system, and its development will continue to be guided by user-defined require-

ments. To date, each phase of TAE Plus's evolution has taken into account advances in virtual operating

systems, human factors research, command language design, standardization efforts and software portabil-

ity. With TAE Plus's flexibility and functionality, it can contribute both more advances and more standard-

ization in user interface development system technology.

ACKNOWLEDGEMENTS

TAE Plus is a NASA software product being developed by the NASA/Goddard Space Flight Center with

contract support by Century Computing, Inc. The work is sponsored by the NASA Office of Space Opera-

tions.

TAE is a registered trademark of National Aeronautics and Space Administration (NASA). It is distributed

through NASA's distribution center, COSMIC, (404) 542-3265. For further information, contact COSMIC

and/or the TAE Support Office at GSFC, (301) 286-6034.

65

REFERENCES

1.Perkins,D.C.,Howell,D.R.,Szczur,M.R.,"TheTransportableApplicationsExecutive--aninteractive
design-to-productiondevelopmentsystem,"Digital Image Processing In Remote Sensing, edited by J-P

Muller, Taylor & Francis Publishers, London, 1988.

2. Scheifler, Robert W., Gettys, Jim., "The X Window System," MIT Laboratory for Computer Science,
Cambridge, MA, October 1986.

3. Open Software Foundation, Inc., OSF/Motif TM Programmer's Reference Manual, Revision I.I, I990

4. Cox, Brad J., Object Oriented Programming, An Evolutionary Approach, Addison-Wesley Publishing

Company, Reading, MA, 1986.

5. Stroustrup, Bjame, The C++ Programming Language, Addison-Wesley Publishing Company, Reading,
MA, 1987.

. Szczur, Martha R., Miller, Philip, "Transportable Applications Environment (TAE) Plus: Experiences in
'Object'ively Modernizing a User Interface Environment," Proceedings of the OOPSLA Confer-

ence, September 1988.

7. Linton, Mark A., Vlissides, John M., Calder, Paul R., "Composing User Interfaces with Interviews,"

IEEE Computer, February, 1989.

8. Klemp, Marjorie, "TAE Plus in a Command and Control Environment", Proceedings of theTAE Eighth

Users' Conference, June, 1990

9. Sharma, Alok, et al., "The TAS Workcenter: An Application Created with TAE", Proceedings of the

TAE Eighth Users' Conference, June, 1990

66

